4. ELECTRICAL PRINCIPLES

Chapter 4.1
Radio Mathematics

ARRL Amateur Extra Class

ARRL

Ohms Law : Current, Voltage, Resistance

Easy for Direct Current

REACTANCE (X) : AC resistance

Reactance depends on frequency

Capacitor: AC resistance decrease with higher frequency
Inductor: AC resistance increase with higher frequency
Any real circuit/component has both resistance AND reactance
Written as X

IMPEDANCE (Z)

The combination of Resistance and Reactance
Written as Z
Two ‘dimensions’ - we can draw it !
x -axis $=$ resistance, R
y-axis $=$ reactance, X

Coordinate systems

Rectangular coordinates (Cartesian)

In our example: $x=4, y=2$
Simply: $(4,2)$

Polar coordinates

Distance from center (radius, r)
Angle (theta, θ)
$(r<\theta)$

Coordinate systems

Convert from Rectangular to Polar
Pythagoras : $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \theta=\tan ^{-1} \frac{y}{x}
\end{aligned}
$$

Polar coordinates are easier to MULTIPLY

Coordinate systems

Convert from Polar to Rectangular

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Rectangular coordinates are easier to ADD

Imaginary numbers

Have 2 rocks. Remove 3.
$=-1$ rock. Impossible before 1700's!

Imagine a number that multiplied with itself is equal to - 1 ...
$j \cdot j=-1$
$j=\sqrt{-1}$

Think of j as the 'imaginary dimension'.

Complex numbers

Combining real numbers with imaginary.. $4+2 j$

Can be expressed as either rectangular or polar coordinates

Why?

Impedances are described as complex numbers
$Z=$ (resistive part) $+j \cdot($ reactive part)
$120+j 40 \Omega$

Formula for parallel impedances:

$$
Z_{e q}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

QUESTIONS?

ONLINE EXAM REVIEW AND PRACTICE QUESTIONS: http://www.arrl.org/examreview

