

4. ELECTRICAL PRINCIPLES

Chapter 4.2 Electrical and magnetic fields

ARRL Amateur Extra Class

Electric field

Caused by a difference in charge

Field lines from + to -

Magnetic field

Magnetic field around a wire

Proportional to the current

Direction depends on direction of the current flow

Current flow:
positive -> negative
Use RIGHT hand rule

Electron flow: negative -> positive Use LEFT hand rule

Time constant - capacitor

Time constant – capacitor : math

Charging

$$V(t)=V_0(1-e^{-t/ au})$$

Discharging

$$V(t) = V_0(e^{-t/ au})$$

$$au=RC$$
 [seconds]

Time constant – capacitor : math example

Q: What is the time constant?

$$au=RC$$
 [seconds]

$$\tau = 220\mu F \cdot 1M\Omega$$

$$\tau = 220 \cdot 10^{-6} \cdot 1 \cdot 10^{6}$$

$$\tau = 220 \cdot 1 = 220s$$

Time constant - inductor

Time constant – inductor : math

Charging

$$V(t)=V_0(e^{-t/ au})$$

Discharging
$$V(t) = V_0 (1 - e^{-t/ au})$$

$$au = rac{L}{R}$$
 [seconds]

Time constant – demo

Time constant:

$$au=RC$$
 [seconds]

$$C = \frac{\tau}{R}$$

Prefix cheat-sheet:

$$\begin{array}{l} M = 10^6 \\ k = 10^3 \\ m = 10^{-3} \\ \mu = 10^{-6} \\ p = 10^{-9} \end{array}$$

Phase angle

Current flows when capacitor charging

When capacitor fully charged, no current flows

If we feed it with sinus wave (AC);

Current Leads Voltage: 'I' leads 'E'

Phase angle

Current flows magnet field is static

If we feed it with sinus wave (AC);

Voltage leads Current: 'E' leads 'I'

Phase angle

Inductive (L)

'E' leads 'I'

---- voltage ---- current Capacitive (C)

'I' leads 'E'

E-L-I the I-C-E man

Complex impedance

Combining Resistance (R) and Reactance (X)

= Impedance (Z)

Z = (resistive part) + j·(reactive part)

Z = R + jX

Positive jX = inductive

Negative jX = capacitive

Complex impedance

Calculate phase angle of two reactances in series:

$$Z = (250 + j100) + (200 - j400)$$

$$Z = 450 - j300$$

$$\Theta = tan^{-1}(\frac{-300}{450}) = -33.7$$

QUESTIONS?

ONLINE EXAM REVIEW AND PRACTICE QUESTIONS:

http://www.arrl.org/examreview