Technician License Course

Chapter 3

Section 3.1 - Electricity

Ham Radio License Course

Discovering the Excitement of Ham Radio

Fundamentals of Electricity

Ham Radio License Course

Fundamentals of Electricity

- Radios are powered by electricity and radio signals are a form of electrical energy.
- A basic understanding of how we control electricity allows you to better install and operate your radio.

Ham Radio License Course

Fundamentals of Electricity

Atom structure

- Electrons are negatively-charged atomic particles, usually surrounding an atom's positively-charged nucleus.
- Depending on the material, the electrons can move in response to an electromotive force.
- The electrons can move from atom to atom, or even completely free of the atoms.

Ham Radio License Course

Fundamentals of Electricity

- Electrical charge can be positive or negative.
- Opposite charges attract each other
- Electrical current is the flow of electrons.
- Electrons want to match up with an atom

Electricity Electron

Basic Electrical Concepts

Basic Electrical Concepts

- Current: the movement of electrons, measured in amperes (A) by an ammeter, and represented by I in formulas
- Voltage: the amount of electromotive force (emf), also called electrical potential, measured in volts (V) by a voltmeter, represented by E or V in formulas

Ham Radio License Course

Basic Electrical Concepts

- Resistance: the opposition to the movement of electrons, measured in ohms (Ω) by an ohmmeter and represented by R in formulas.
- Resistance is like friction and turns electrical energy into heat when current flows.
- Conductors permit current flow (low resistance) and insulators block current flow (high resistance).

Ham Radio License Course

Basic Electrical Concepts

- The flow of water through a pipe is a good analogy to understand the three characteristics of electricity and how they are related.

Electricity: The Water Analogy

High Voltage, Low Current

Low Voltage, High Current

Ham Radio License Course

Discovering the Excitement of Ham Radio

Basic Electrical Concepts

High Voltage, Low Current

Low Voltage, High Current

Basic Electrical Concepts

- Voltage from a source of electrical energy causes current to flow.
- Resistance is a material's opposition to the flow of current.
- Voltage, current and resistance affect each other. For example, higher voltage (bigger push) causes more current (more flow).

Ham Radio License Course

The Two Kinds of Current

- Current that flows in only one direction, is called direct current (dc).
- Batteries are a common source of dc.

Direct Current Alternating Current

Ham Radio License Course

The Two Kinds of Current

- Current that flows in one direction then in the opposite direction is called alternating current (ac).

Ham Radio License Course

The Two Kinds of Current

- Current that flows in one direction then in the opposite direction is called alternating current (ac).
- Household current is ac

Direct Current Alternating Current

The Two Kinds of Current

- AC current reverses direction on a regular basis
- Each process of reversing is a cycle.
- The number of cycles per second is frequency, measured in hertz (Hz).
- $1 \mathrm{~Hz}=1$ cycle per second

Ham Radio License Course

The Electric Circuit: An Electronic Roadmap

- For current to flow, there must be a path from one side of the energy source to the other side of the source
- This path is called a circuit.

The Electric Circuit: An Electronic Roadmap

- For current to flow, there must be a path from one side of the energy source to the other side of the source - this path is called a circuit.

Ham Radio License Course

Series vs Parallel Circuits

- There are two types of electric circuits:
- Serial and,
- Parallel

Ham Radio License Course

Series Circuits

- Series circuits provide one and only one path for current flow
- Current the same through each component

Ham Radio License Course

Parallel Circuits

- Parallel circuits provide multiple paths for current flow.
- Voltage is the same across all components

Ham Radio License Course

Discovering the Excitement of Ham Radio

How do you connect a Volt/Amp Meter?

Discovering the Excitement of Ham Radio

Ohm's Law

$E=I x R$

Ham Radio License Course

Ohm's Law

- E represents voltage
- Units - volts (V)

Ham Radio License Course

Ohm's Law

- E represents voltage - Units - volts (V)
- I represents current
- Units - amperes (A)

Ohm's Law

- E represents voltage - Units - volts (V)
- I represents current
- Units - amperes (A)
- R represents resistance
- Units - ohms (Ω)

Ham Radio License Course

Discovering the Excitement of Ham Radio

Ohm's Law

$$
R=E / I
$$

Discovering the Excitement of Ham Radio

Ohm's Law

Discovering the Excitement of Ham Radio
Ohm's Law

$$
\begin{aligned}
R & =E / I \\
I & =E / R \\
E=I & \times R
\end{aligned}
$$

Ham Radio License Course

Power - Electrons Doing Work and Expending Energy

Ham Radio License Course

Power - Electrons Doing Work and Expending Energy

- Any time energy is expended, power is consumed.

Ham Radio License Course

Power - Electrons Doing Work and Expending Energy

- Any time energy is expended, power is consumed.
- Electrons moving through resistance expend electrical energy and consume power.

Ham Radio License Course

Discovering the Excitement of Ham Radio

Power - Electrons Doing Work and Expending Energy

- Any time energy is expended, power is consumed.
- Electrons moving through resistance expend electrical energy and consume power.
- Power is the rate at which energy is consumed.

Ham Radio License Course

Discovering the Excitement of Ham Radio

Power - Electrons Doing Work and Expending Energy

- Any time energy is expended, power is consumed.
- Electrons moving through resistance expend electrical energy and consume power.
- Power is the rate at which energy is consumed.
- Power is measured in units of watts (W).

Ham Radio License Course

Discovering the Excitement of Ham Radio

Power Equation

Ham Radio License Course

Discovering the Excitement of Ham Radio

Power Equation

- Power is calculated as the product of voltage and current

Ham Radio License Course

Power Equation

- Power is calculated as the product of voltage and current

Ham Radio License Course

Power Equation

- Power is calculated as the product of voltage and current $P=E x I$

Ham Radio License Course

Power Equation

- Power is calculated as the product of voltage and current
$P=E x I$
$E=P / I$

Ham Radio License Course

Power Equation

- Power is calculated as the product of voltage and current
$P=E x I$
$E=P / I$
$I=P / E$

Power Equation

- Power is calculated as the product of voltage and current
$P=E \times I$
$E=P / I$
$I=P / E$
- Like Ohm's Law, if you
 know two of the values, you can calculate the third.

Ham Radio License Course

Discovering the Excitement of Ham Radio

Are there any questions?

