Discovering the Excitement of Ham Radio

Technician License Course

Chapter 3

Section 3.1 - Electricity

Discovering the Excitement of Ham Radio

Fundamentals of Electricity

Discovering the Excitement of Ham Radio

Fundamentals of Electricity

- Radios are powered by electricity and radio signals are a form of electrical energy.
- A basic understanding of how we control electricity allows you to better install and operate your radio.

Discovering the Excitement of Ham Radio

Fundamentals of Electricity

- Electrons are negatively-charged atomic particles, usually surrounding an atom's positively-charged nucleus.
- Depending on the material, the electrons can move in response to an *electromotive force*.
- The electrons can move from atom to atom, or even completely free of the atoms.

Discovering the Excitement of Ham Radio

Fundamentals of Electricity

- Electrical charge can be positive or negative.
- Opposite charges attract each other
- Electrical current is the flow of *electrons*.
- Electrons want to match up with an atom

Electricity Electron

Discovering the Excitement of Ham Radio

Discovering the Excitement of Ham Radio

- Current: the movement of electrons, measured in *amperes* (A) by an ammeter, and represented by *I* in formulas
- Voltage: the amount of electromotive force (emf), also called electrical potential, measured in volts (V) by a voltmeter, represented by *E* or *V* in formulas

Discovering the Excitement of Ham Radio

- **Resistance:** the opposition to the movement of electrons, measured in *ohms* (Ω) by an *ohmmeter* and represented by R in formulas.
- Resistance is like friction and turns electrical energy into heat when current flows.
- **Conductors** permit current flow (low resistance) and **insulators** block current flow (high resistance).

Discovering the Excitement of Ham Radio

Basic Electrical Concepts

 The flow of water through a pipe is a good analogy to understand the three characteristics of electricity and how they are related.

ARRL0004

Electricity: The Water Analogy

High Voltage, Low Current

Low Voltage, High Current

Discovering the Excitement of Ham Radio

Basic Electrical Concepts

High Voltage, Low Current

Low Voltage, High Current

Discovering the Excitement of Ham Radio

- Voltage from a source of electrical energy causes current to flow.
- Resistance is a material's opposition to the flow of current.
- Voltage, current and resistance affect each other. For example, higher voltage (bigger push) causes more current (more flow).

Discovering the Excitement of Ham Radio

The Two Kinds of Current

- Current that flows in only one direction, is called direct current (dc).
- Batteries are a common source of dc.

Discovering the Excitement of Ham Radio

The Two Kinds of Current

 Current that flows in one direction then in the opposite direction is called alternating current (ac).

Discovering the Excitement of Ham Radio

The Two Kinds of Current

- Current that flows in one direction then in the opposite direction is called alternating current (ac).
- Household current is ac

Discovering the Excitement of Ham Radio

The Two Kinds of Current

- AC current reverses direction on a regular basis
- Each process of reversing is a cycle.
- The number of cycles per second is *frequency*, measured in hertz (Hz).
- 1 Hz = 1 cycle per second

Discovering the Excitement of Ham Radio

The Electric Circuit: An Electronic Roadmap

- For current to flow, there must be a path from one side of the energy source to the other side of the source
- This path is called a *circuit*.

Discovering the Excitement of Ham Radio

The Electric Circuit: An Electronic Roadmap

• For current to flow, there must be a path from one side of the energy source to the other side of the source – this path is called a *circuit*.

Resistor

Capacitor

Discovering the Excitement of Ham Radio

Series vs Parallel Circuits

- There are two types of electric circuits:
 - Serial and,
 - Parallel

Discovering the Excitement of Ham Radio

Series Circuits

- Series circuits provide one and only one path for current flow
- Current the same through each component

Discovering the Excitement of Ham Radio

Parallel Circuits

- Parallel circuits provide multiple paths for current flow.
- Voltage is the same across all components

Discovering the Excitement of Ham Radio

How do you connect a Volt/Amp Meter?

Discovering the Excitement of Ham Radio

Ohm's Law

$E = I \times R$

Discovering the Excitement of Ham Radio

Ohm's Law

• E represents voltage - Units – volts (V)

Discovering the Excitement of Ham Radio

Ohm's Law

- E represents voltage - Units – volts (V)
- I represents current

- Units – amperes (A)

Discovering the Excitement of Ham Radio

Ohm's Law

- E represents voltage - Units – volts (V)
- I represents current
- R represents resistance

- Units – amperes (A) - Units – ohms (Ω)

Discovering the Excitement of Ham Radio

Ohm's Law

R = E / I

Discovering the Excitement of Ham Radio

Ohm's Law

R = E / I

I = E / R

/ I / R

Discovering the Excitement of Ham Radio

Ohm's Law

Discovering the Excitement of Ham Radio

Power - Electrons Doing Work and Expending Energy

Discovering the Excitement of Ham Radio

Power - Electrons Doing Work and Expending Energy

• Any time energy is expended, power is consumed.

Discovering the Excitement of Ham Radio

Power - Electrons Doing Work and Expending Energy

- Any time energy is expended, power is consumed.
- Electrons moving through resistance expend electrical energy and consume power.

s consumed. xpend

Discovering the Excitement of Ham Radio

Power - Electrons Doing Work and Expending Energy

- Any time energy is expended, power is consumed.
- Electrons moving through resistance expend electrical energy and consume power.
- Power is the rate at which energy is consumed.

Discovering the Excitement of Ham Radio

Power - Electrons Doing Work and Expending Energy

- Any time energy is expended, power is consumed.
- Electrons moving through resistance expend electrical energy and consume power.
- Power is the rate at which energy is consumed.
- Power is measured in units of watts (W).

Discovering the Excitement of Ham Radio

Power Equation

Discovering the Excitement of Ham Radio

Power Equation

• Power is calculated as the product of voltage and current

Discovering the Excitement of Ham Radio

Power Equation

• Power is calculated as the product of voltage and current

Discovering the Excitement of Ham Radio

Power Equation

• Power is calculated as the product of voltage and current $P = E \times I$

Discovering the Excitement of Ham Radio

Power Equation

• Power is calculated as the product of voltage and current $P = E \times I$ E = P / I

Discovering the Excitement of Ham Radio

Power Equation

- Power is calculated as the product of voltage and current
 - $P = E \times I$ E = P / II = P / E

Discovering the Excitement of Ham Radio

Power Equation

- Power is calculated as the product of voltage and current
 - $P = E \times I$
 - E = P / II = P / E
- Like Ohm's Law, if you know two of the values, you can calculate the third.

Discovering the Excitement of Ham Radio

Are there any questions?

