Discovering the Excitement of Ham Radio

Technician License Course

Chapter 3

Section 3.2 – Components and Units

Discovering the Excitement of Ham Radio

Electronics – Controlling the Flow of Current

• To make an electronic device (like a radio) do something useful (like a receiver), we need to control and manipulate the flow of current.

Discovering the Excitement of Ham Radio

Electronics – Controlling the Flow of Current

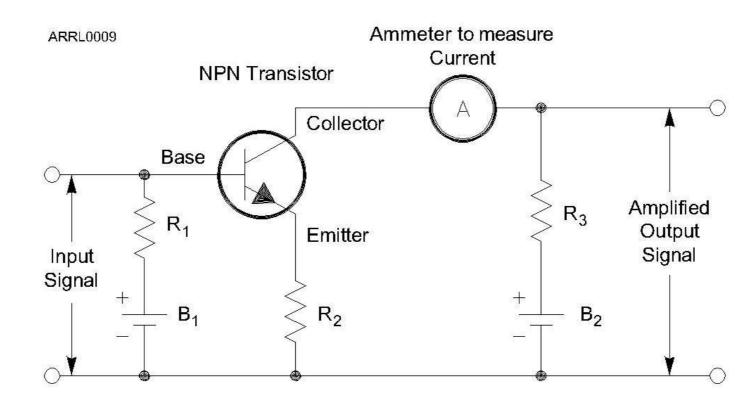
- To make an electronic device (like a radio) and do something useful (like a receiver), we need to control and manipulate the flow of current.
- There are several different electronic components that are used to do this

Discovering the Excitement of Ham Radio

Schematic Diagrams

• We can draw pictures of electronic components forming circuits, such as for the parallel and series circuit examples. This is too cumbersome for most circuits.

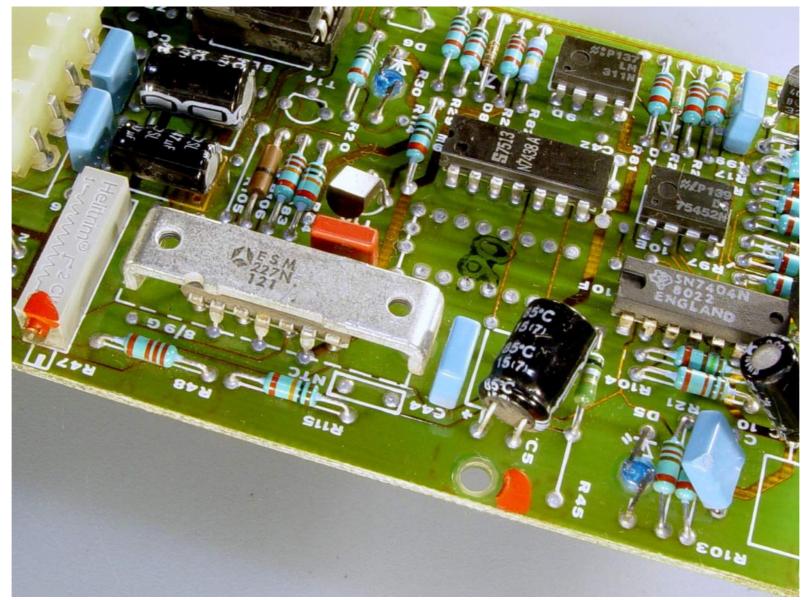
Discovering the Excitement of Ham Radio


Schematic Diagrams

- We can draw pictures of electronic components forming circuits, such as for the parallel and series circuit examples. This is too cumbersome for most circuits.
- Schematic diagrams use symbols with different components, each having a different symbol.

Discovering the Excitement of Ham Radio

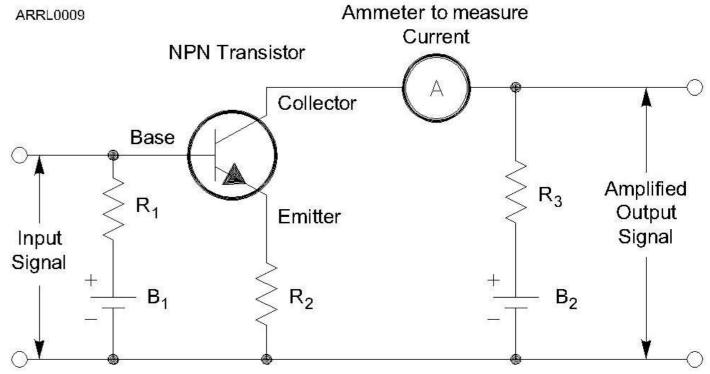
Schematic Diagrams



The lines and dots on schematics represent electrical connections between the components.

Discovering the Excitement of Ham Radio

Component Designators



© Mister RF (via Wikimedia Commons)

Discovering the Excitement of Ham Radio

Component Designators

 Each schematic symbol has a *designator* to denote which component it refers to. For example, the 10th resistor in a circuit is R10.

• Resistors (R), capacitors (C), inductors (L).

Discovering the Excitement of Ham Radio

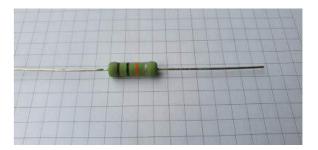
The Resistor

Discovering the Excitement of Ham Radio

The Resistor

- The function of a resistor is to restrict the flow of current.
- Schematic symbol
- Remember Ohm's Law: I = E / R $E = I \times R$

Discovering the Excitement of Ham Radio


The Resistor

- The function of a resistor is to restrict the flow of current.
- Schematic symbol $-\sqrt{\sqrt{-}}$
- Remember Ohm's Law: I = E / R $E = I \times R$

© YoktoBit (via Wikimedia Commons)

© YoktoBit (via Wikimedia Commons)

© oomlout (via Wikimedia Commons)

Discovering the Excitement of Ham Radio

The Variable Resistor

• A resistor that you can change the value of.

© Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)

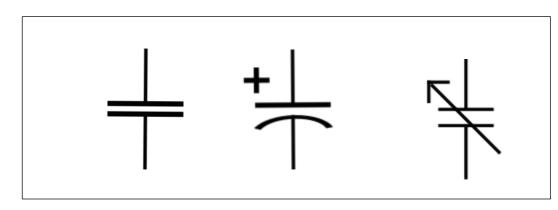
Potentiometer or "Pot"

Arrow indicates adjustable value, such as for a volume control.

Discovering the Excitement of Ham Radio

The Capacitor

© Raimond Spekking / <u>CC BY-SA 4.0</u> (via Wikimedia Commons)


╪╧╋

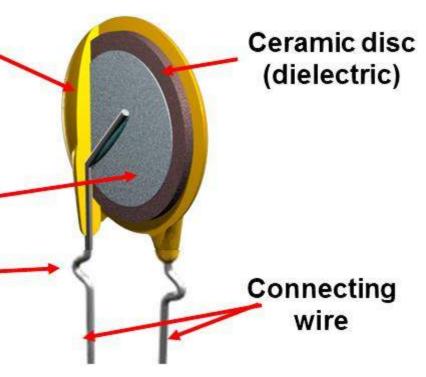
Discovering the Excitement of Ham Radio

The Capacitor

- The function of a capacitor is to store electrical energy called *capacitance*.
- Schematic symbols

Discovering the Excitement of Ham Radio

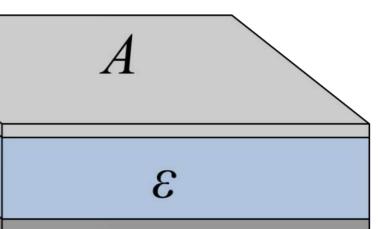
The Capacitor


- The function of a capacitor is to store electrical energy called *capacitance*.
- Schematic symbol Acts like a battery

Protective coating

Electrode

Hold-off-kink



Discovering the Excitement of Ham Radio

The Capacitor

- The function of a capacitor is to store electrical energy called *capacitance*.
- Schematic symbol
 - Acts like a battery
 - Stores energy in an electric field created by voltage between the electrodes material between them

with insulating

Discovering the Excitement of Ham Radio

The Inductor

© Adriusa (via Wikimedia Commons)

© Jx (via Wikimedia Commons)

Schematic symbol

Discovering the Excitement of Ham Radio

The Inductor

 The function of an inductor is to store magnetic energy – called inductance.

Discovering the Excitement of Ham Radio

The Inductor

- The function of an inductor is to store magnetic energy called *inductance*.
- A coil of wire around a *core* of air or magnetic material like iron or ferrite

Discovering the Excitement of Ham Radio

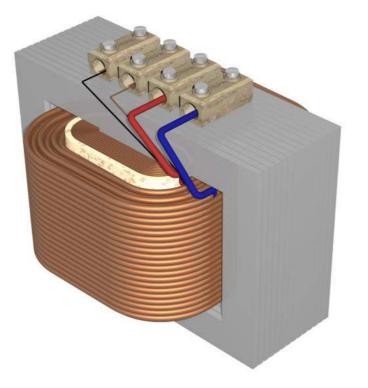
The Inductor

- The function of an inductor is to store magnetic energy called *inductance*.
- A coil of wire around a core of air or magnetic material like iron or ferrite
- Stores energy in a magnetic field created by current in the wire

Discovering the Excitement of Ham Radio

The Transformer

© ArnoldReinhold (via Wikimedia Commons)



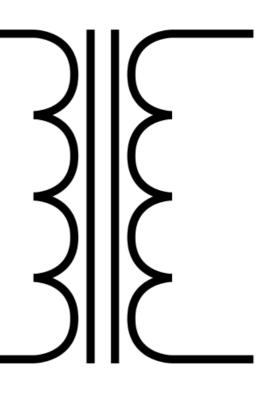
Discovering the Excitement of Ham Radio

The Transformer

Schematic symbol

• A pair of inductors sharing a common core

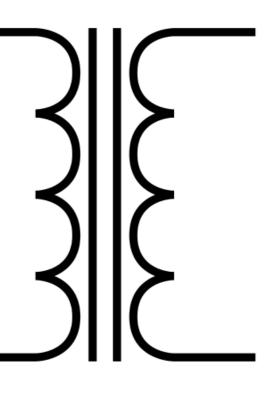
© Mtodorov (via Wikimedia Commons)


Discovering the Excitement of Ham Radio

The Transformer

- A pair of inductors sharing a common core
- Also share their magnetic field

Schematic symbol


Discovering the Excitement of Ham Radio

The Transformer

- A pair of inductors sharing a common core
- Also share their magnetic field
- Used to transfer energy from one circuit to another without a direct connection (isolation)
- Changes the ratio of voltage and current (step-up, step-down)

Schematic symbol

Discovering the Excitement of Ham Radio

Electrical Units

- Each type of component has a value measured in specific units:
 - Resistors > resistance > ohms (Ω)
 - Capacitors > capacitance > farads (F)
 - Inductors > inductance > henrys (H)

Discovering the Excitement of Ham Radio

Indicators and Displays

© Mister RF (via Wikimedia Commons)

© Mister RF (via Wikimedia Commons)

Discovering the Excitement of Ham Radio

Indicators and Displays

- Indicators communicate status
 - ON/OFF, ready/stand-by, left/right
 - LEDs, light bulbs, symbols, audio tones
- Displays communicate values or text
 - Numeric values, warnings, messages
 - Digital and analog meters, LCD screens

Discovering the Excitement of Ham Radio

Reactance

Discovering the Excitement of Ham Radio

Reactance

 Capacitors and inductors store energy, rather than dissipating it like resistors.

Discovering the Excitement of Ham Radio

Reactance

- Capacitors and inductors store energy, rather than dissipating it like resistors.
- Energy storage creates an effect called *reactance* (symbol X) that acts like a resistance in opposing the flow of ac current.

Discovering the Excitement of Ham Radio

Reactance

- Capacitors and inductors store energy, rather than dissipating it like resistors.
- Energy storage creates an effect called *reactance* (symbol X) that acts like a resistance in opposing the flow of ac current.

- Capacitors create capacitive reactance (X_c)

Discovering the Excitement of Ham Radio

Reactance

- Capacitors and inductors store energy, rather than dissipating it like resistors.
- Energy storage creates an effect called *reactance* (symbol X) that acts like a resistance in opposing the flow of ac current.
 - Capacitors create capacitive reactance (X_c)
 - Inductors create inductive reactance (X_i)

Discovering the Excitement of Ham Radio

Reactance

- Capacitors and inductors store energy, rather than dissipating it like resistors.
- Energy storage creates an effect called *reactance* (symbol X) that acts like a resistance in opposing the flow of ac current.
 - Capacitors create capacitive reactance (X_C)
 - Inductors create inductive reactance (X_L)
 - The effects of each are complementary

n dissipating it like (symbol X) that acts nt.

Discovering the Excitement of Ham Radio

Impedance

Discovering the Excitement of Ham Radio

Impedance

• The combination of resistance (R) and reactance (X) is called impedance, represented by the symbol Z.

Discovering the Excitement of Ham Radio

Impedance

- The combination of resistance (R) and reactance (X) is called impedance, represented by the symbol Z.
- Impedance represents a circuit's opposition to both ac and dc currents.

Discovering the Excitement of Ham Radio

Resonance

Discovering the Excitement of Ham Radio

Resonance

• A component's reactance depends on frequency: X_L increases with frequency while *X_C* decreases.

Discovering the Excitement of Ham Radio

Resonance

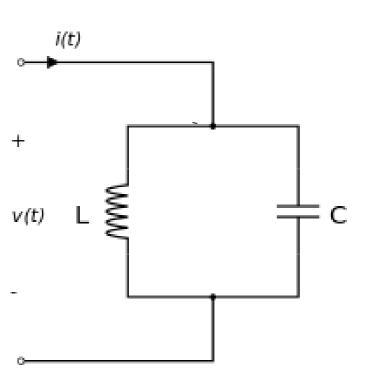
- A component's reactance depends on frequency: X_L increases with frequency while X_C decreases.
- At the frequency for which a circuit's X_L and X_C are equal, their effects cancel. This is the circuit's *resonant frequency*.

: X_L increases with re equal, their effects

Discovering the Excitement of Ham Radio

Resonance

- A component's reactance depends on frequency: X_i increases with frequency while X_C decreases.
- At the frequency for which a circuit's X_1 and X_2 are equal, their effects cancel. This is the circuit's resonant frequency.
- At *resonance*, a circuit has only resistance, which affects ac and dc current equally.



Discovering the Excitement of Ham Radio

Resonant or Tuned Circuit

- Capacitors and inductors connected together create a *tuned circuit*.
- When X_L and X_C are equal, the circuit is *resonant*.
- If C or L are adjustable the resonant frequency can be varied or tuned.

Discovering the Excitement of Ham Radio

Semiconductor Components

Discovering the Excitement of Ham Radio

Semiconductor Components

 Made of material like silicon that are "OK" conductors but not as good as metals.

ents luctors but not as

Discovering the Excitement of Ham Radio

Semiconductor Components

- Made of material like silicon that are "OK" conductors but not as good as metals.
- Impurities added to semiconductors create material with more than usual electrons (*N*-type) and fewer than usual (*P*-type) electrons.

Discovering the Excitement of Ham Radio

Semiconductor Components

- Made of material like silicon that are "OK" conductors but not as good as metals.
- Impurities added to semiconductors create material with more than usual electrons (*N*-type) and fewer than usual (*P*-type) electrons.
- Structures of N and P material can control current flow through the semiconductor.

Discovering the Excitement of Ham Radio

The Diode

© Mister RF (via Wikimedia Commons)

© Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)

- (D or CR)

Schematic symbols → →

Designator

Discovering the Excitement of Ham Radio

The Diode

Allows current to flow in only one direction.

Schematic symbols

 Designator • (D or CR)

Discovering the Excitement of Ham Radio

The Diode

- Allows current to flow in only one direction.
 - Two electrodes: anode and cathode

Schematic symbols

Designator • (D or CR)

Anode — Cathode

Discovering the Excitement of Ham Radio

The Diode

- Allows current to flow in only one direction.
 - Two electrodes: anode and cathode
 - AC current is changed to varying pulses of DC – called *rectification*

Schematic symbols →⊢ →]-

Designator • (D or CR)

Anode → Cathode

Discovering the Excitement of Ham Radio

The Diode

- Allows current to flow in only one direction.
 - Two electrodes: anode and cathode
 - AC current is changed to varying pulses of DC – called *rectification*
 - Diodes used to change AC power to DC power are called *rectifiers*

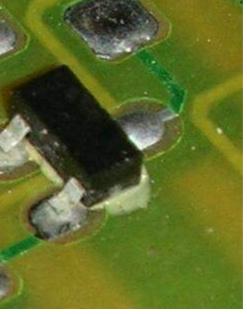
Schematic symbols →⊢ →

Designator • (D or CR)

Anode Cathode

Discovering the Excitement of Ham Radio

The Transistor



© Mister RF (via Wikimedia Commons)

© Mister RF (via Wikimedia Commons)

© Hutschi (via Wikimedia Commons)

Discovering the Excitement of Ham Radio

The Transistor

• The function of a transistor is to control large signals with small ones.

Discovering the Excitement of Ham Radio

The Transistor

 The function of a transistor is to control large signals with small ones.

- Designator (Q)

 An "electronically controlled current valve"

Schematic symbol

Bipolar Junction Transistor (BJT)

Field-Effect Transistor (FET)

Discovering the Excitement of Ham Radio

The Transistor

- The function of a transistor is to control large signals with small ones. Designator (Q)
- An "electronically controlled current valve"
 - When used as an amplifier a transistor produces gain

Schematic symbol

Bipolar Junction Transistor (BJT)

Field-Effect Transistor (FET)

Discovering the Excitement of Ham Radio

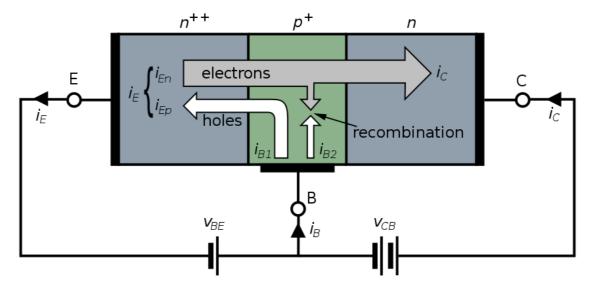
The Transistor

- The function of a transistor is to control large
 Schematic symbol signals with small ones. Designator (Q)
- An "electronically controlled current valve"
 - When used as an amplifier a transistor produces *gain*
- Transistors can also be used as a switch

Field-Effect Transistor (FET)

Discovering the Excitement of Ham Radio

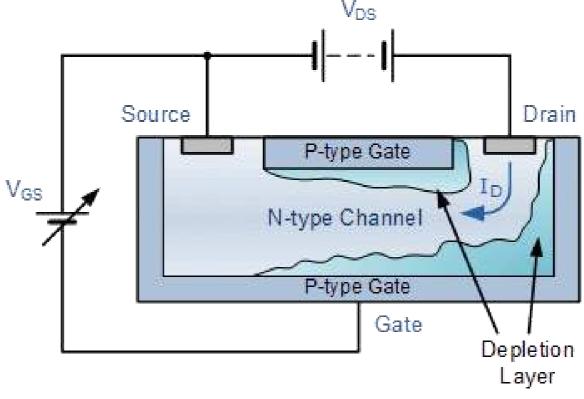
The Transistor


 The Bipolar Junction Transistor (BJT) has three layers of N or P material connected to electrodes:

Discovering the Excitement of Ham Radio

The Transistor

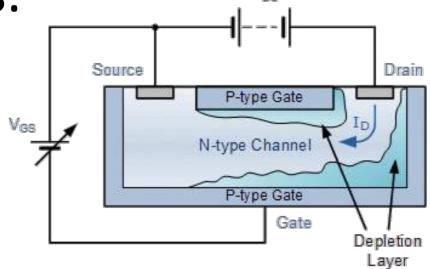
 The Bipolar Junction Transistor (BJT) has three layers of N or P material connected to electrodes:


• Depending on the arrangement of layers, a BJT is either an NPN or PNP transistor.

Discovering the Excitement of Ham Radio

The Transistor

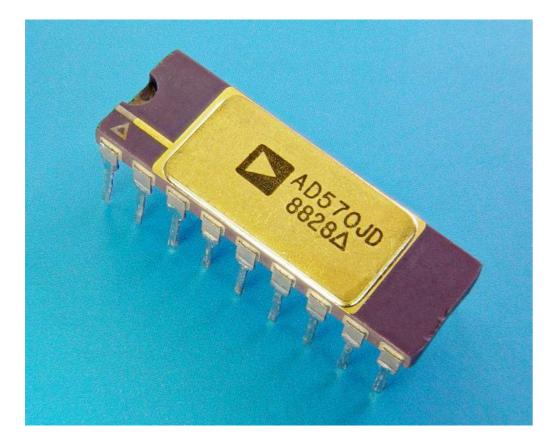
 The Field-Effect Transistor (FET) has a conducting path or channel of N and P material connected to the drain and source electrodes.



Discovering the Excitement of Ham Radio

The Transistor

 The Field-Effect Transistor (FET) has a conducting path or channel of N and P material connected to the drain and source electrodes.



 Voltage applied to the gate electrode controls current through the channel.

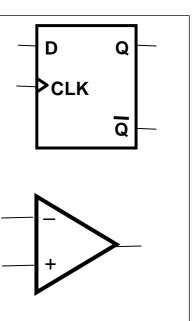
Discovering the Excitement of Ham Radio

The Integrated Circuit

TRND 5x86C TRN 5x86C TRND 5x86C TRND 5x86C see systems

© Mister RF (via Wikimedia Commons)

© Mister RF (via Wikimedia Commons)


Discovering the Excitement of Ham Radio

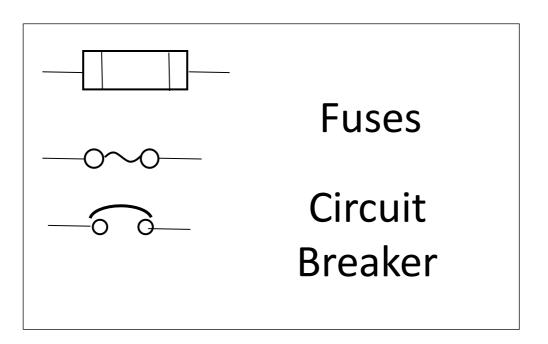
The Integrated Circuit

• The integrated circuit is a collection of components contained in one device that accomplishes a specific task.

Schematic symbol Designator (IC or U)

Discovering the Excitement of Ham Radio

Protective Components


© Mcapdevila (via Wikimedia Commons)

Discovering the Excitement of Ham Radio

Protective Components

 Fuses and circuit breakers are designed to remove power in case of a circuit overload.

Schematic symbol • Designator (F or CB)

Discovering the Excitement of Ham Radio

Protective Components

- Fuses and circuit breakers are designed to remove power in case of a circuit overload.
 - Fuses blow one time protection

S move power

Discovering the Excitement of Ham Radio

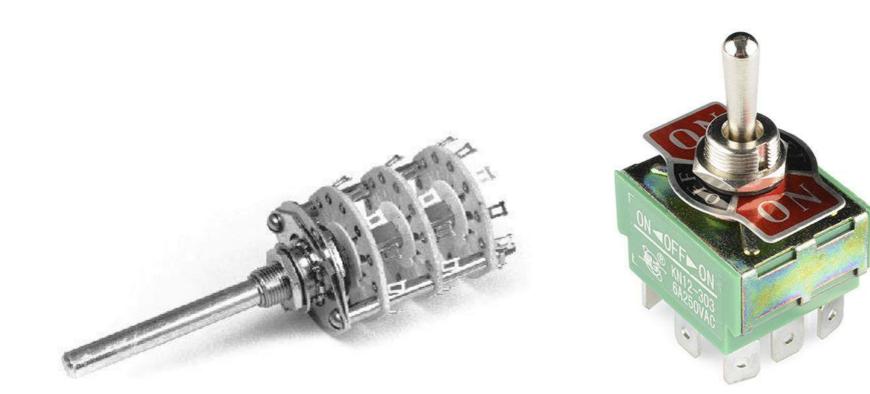
Protective Components

- Fuses and circuit breakers are designed to remove power in case of a circuit overload.
 - Fuses blow one time protection
 - Circuit breakers trip can be reset and reused

S move power

Discovering the Excitement of Ham Radio

Protective Components

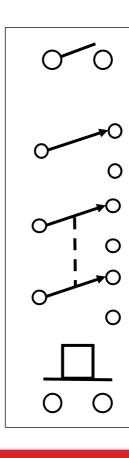

- Fuses and circuit breakers are designed to remove power in case of a circuit overload.
 - Fuses blow one time protection
 - Circuit breakers trip can be reset and reused
 - Always use proper rating

S move power in

Discovering the Excitement of Ham Radio

Switches

© Raeky (via Wikimedia Commons)



© Achalshanth (via Wikimedia Commons)

Discovering the Excitement of Ham Radio

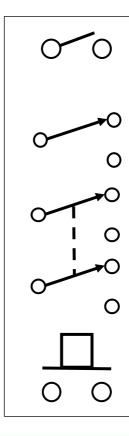
Switches

• Switches are used to interrupt or Designator (S or SW) allow current to flow. • Schematic Symbol:

Pushbutton

DPDT

SPDT


SPST

Discovering the Excitement of Ham Radio

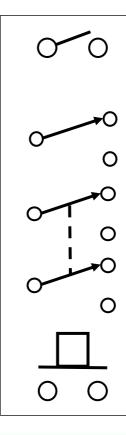
Switches

- Switches are used to interrupt or allow current to flow.
- Each circuit controlled by the switch is a *pole*

Pushbutton

DPDT

SPDT


SPST

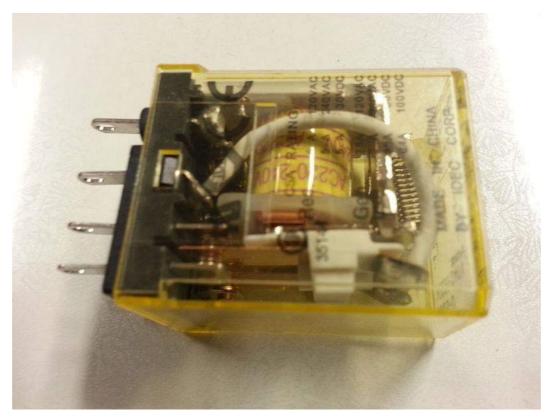
Discovering the Excitement of Ham Radio

Switches

- Switches are used to interrupt or allow current to flow.
- Each circuit controlled by the switch is a *pole*
- Each position is called a *throw*

Pushbutton

DPDT

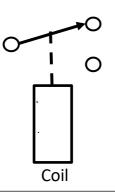

SPDT

SPST

Discovering the Excitement of Ham Radio

Relays

© Balurbala (via Wikimedia Commons)


Discovering the Excitement of Ham Radio

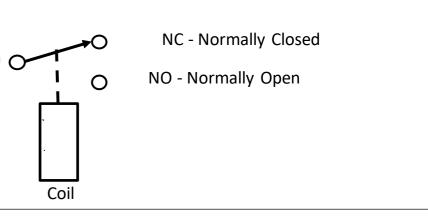
Relays

Relays are switches activated by Designator (K or RLY) current in a coil (electromagnet)
 Schematic Symbol

COM - Common C

NC - Normally Closed

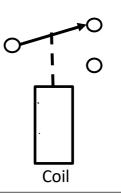
NO - Normally Open


Discovering the Excitement of Ham Radio

Relays

- Relays are switches activated by current in a coil (electromagnet)
- Relays use the same pole/throw names as switches

COM - Common C


Discovering the Excitement of Ham Radio

Relays

- Relays are switches activated by current in a coil (electromagnet)
- Relays use the same pole/throw names as switches
- The moving switch is called the *armature*

COM - Common C

NC - Normally Closed

NO - Normally Open

Discovering the Excitement of Ham Radio

Relays are switches activated by current in a coil (electromagnet)

- Relays use the same pole/throw names as switches
- The moving switch is called the *armature*
- Contacts are named by when they are connected

COM - Common C

NC - Normally Closed

NO - Normally Open

Discovering the Excitement of Ham Radio

Are there any questions?

