

Discovering the Excitement of Ham Radio

Technician License Course

Chapter 4

Section 4.3 Feed Lines & SWR

Discovering the Excitement of Ham Radio

Feed Line Vocabulary

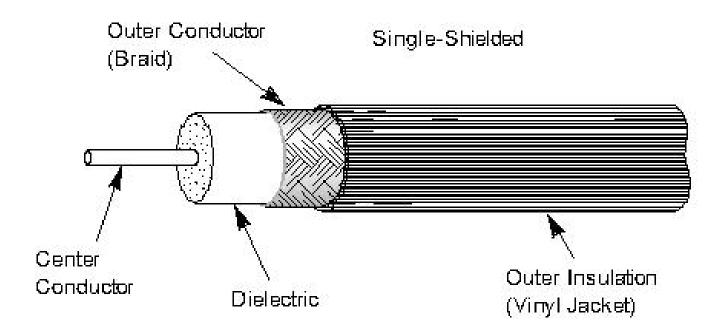
Discovering the Excitement of Ham Radio

Feed Line Vocabulary

- Center conductor: Central wire
- Dielectric: Insulation surrounding center conductor
- Shield: Braid or foil surrounding dielectric
- Jacket: Protective outer plastic coating
- Forward (reflected) power: RF power traveling toward (away from) a load such as an antenna

Discovering the Excitement of Ham Radio

Coaxial Cable



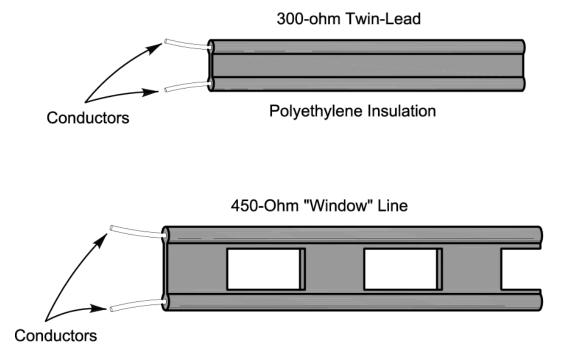
Discovering the Excitement of Ham Radio

Coaxial Cable

- Most common feed line
- Easy to use
- Not affected by nearby materials
- Has higher loss than open-wire line at most frequencies
- Air-insulated "hard line" has lowest loss

Discovering the Excitement of Ham Radio

Open-Wire Line



Open-Wire Line

- Lighter and less expensive than coax
- Has lower loss than coax at most frequencies
- More difficult to use since it is affected by nearby materials
- Requires impedance matching equipment to use with most transceivers

ARRL The national a

Discovering the Excitement of Ham Radio

Characteristic Impedance

Discovering the Excitement of Ham Radio

Characteristic Impedance

- The impedance presented to a wave traveling through a feed line
- Given in ohms (Ω), symbolized as Z_0
- Depends on how the feed line is constructed and what materials are used
 - Coax: 50 and 75 Ω
 - OWL: 300, 450, and 600 Ω

Discovering the Excitement of Ham Radio

Standing Wave Ratio (SWR)

Discovering the Excitement of Ham Radio

Standing Wave Ratio (SWR)

- If the antenna feed point and feed line impedances are not identical, some RF power is reflected back toward the transmitter.
 - Called a mismatch
 - Forward and reflected waves create a pattern of standing waves of voltage and current in the line
 - SWR is the ratio of standing wave max to min
- Measured with an SWR meter or SWR bridge

Discovering the Excitement of Ham Radio

Nothing Is Perfect

Discovering the Excitement of Ham Radio

Nothing Is Perfect

- SWR equals the ratio of feed point (or *load*) and feed line impedance, whichever is greater than 1 (SWR always greater than 1:1).
- What is an acceptable SWR?
 - 1:1 SWR is perfect no power reflected
 - Up to 2:1 SWR is normal
- Modern radios lower transmitter output power protection when SWR is above 2:1

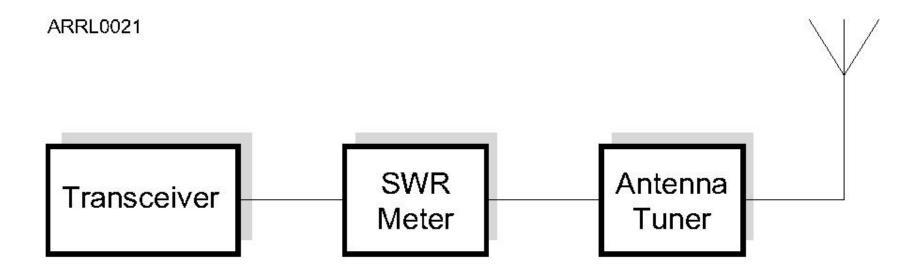
for

Discovering the Excitement of Ham Radio

Nothing Is Perfect

- SWR above 3:1 is considered high in most cases.
- Erratic SWR readings may indicate a faulty feed line, faulty feed line connectors, or a faulty antenna.
- High SWR can be corrected by
 - Tuning or adjusting the antenna
 - With impedance matching equipment at the transmitter
 - Called an antenna tuner or transmatch
 - Does not change SWR in the feed line

Discovering the Excitement of Ham Radio



Discovering the Excitement of Ham Radio

Adjusting SWR

 An SWR meter is inserted in the feed line and indicates the mismatch at that point.

Discovering the Excitement of Ham Radio

Dummy Loads

Discovering the Excitement of Ham Radio

Dummy Loads

- A dummy load is a resistor and a heat sink
 - Used to replace an antenna or other piece of equipment during testing.
- Dummy loads dissipate signals in the feed line as heat
 - Allows transmitter testing without sending a signal over the air
 - Helpful in troubleshooting an antenna system

Discovering the Excitement of Ham Radio

